Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals
نویسنده
چکیده
We report on a method to fabricate nanometer scale mechanical structures from bulk, single-crystal Si substrates. A technique developed previously required more complex fabrication methods and an undercut step using wet chemical processing. Our method does not require low pressure chemical vapor deposition of intermediate masking layers, and the final step in the processing uses a dry etch technique, avoiding the difficulties encountered from surface tension effects when wet processing mechanically delicate or large aspect ratio structures. Using this technique, we demonstrate fabrication of a mechanical resonator with a fundamental resonance frequency of 70.72 MHz and a quality factor of 2310. © 1996 American Institute of Physics. @S0003-6951~96!04144-7#
منابع مشابه
CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators
Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by...
متن کاملUltra-high-Q phononic resonators on-chip at cryogenic temperatures
Long-lived, high frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path towards chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryo...
متن کاملDesign and Fabrication of a Narrow-bandwidth Micromechanical Ring Filter using a Novel Process in UV-LIGA Technology
This paper presents the design and a new low-cost process for fabrication of a second-order micromechanical filter using UV-LIGA technology. The micromechanical filter consists of two identical bulk-mode ring resonators, mechanically coupled by a flexural-mode beam. A new lumped modeling approach is presented for the bulk-mode ring resonators and filter. The validity of the analytical derivatio...
متن کاملExtraction of Nonlinear Thermo-Electroelastic Equations for High Frequency Vibrations of Piezoelectric Resonators with Initial Static Biases
In this paper, the general case of an anisotropic thermo-electro elastic body subjected to static biasing fields is considered. The biasing fields may be introduced by heat flux, body forces, external surface tractions, and electric fields. By introducing proper thermodynamic functions and employing variational principle for a thermo-electro elastic body, the nonlinear constitutive relations an...
متن کاملMonocrystalline silicon carbide nanoelectromechanical systems
SiC is an extremely promising material for nanoelectromechanical systems given its large Young’s modulus and robust surface properties. We have patterned nanometer scale electromechanical resonators from single-crystal 3C-SiC layers grown epitaxially upon Si substrates. A surface nanomachining process is described that involves electron beam lithography followed by dry anisotropic and selective...
متن کامل